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We propose an approximate but simple and general procedure for treating resonance
broadening in weak-turbulence interactions. The resonance-broadening corrections to
the wave-particle, wave-wave, nonlinear-Landau-damping, and four-wave weak-turbu-

lence equations are computed as examples.

The procedure may be used to predict at the

outset whether resonance broadening occurs in a specific higher-order process.

The major modification to the conventional
weak-turbulence equations demanded by renor-
malized plasma turbulence theory is a broaden-
ing of the resonances.!'™ A particularly fruitful
and powerful approach is to postulate this result
and then determine from simple physical consid-
erations the extent of the broadening. In other

equations are improved through the use of smoothed-
over driving quantities
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words, it is decided a priori that it is unphysical
and incorrect to allow the evolution of the plasma
to be determined by quantities describing a “gran-
ulation” of wave or particle coordinate space that
is finer than a certain resonance-broadening
width. It then follows that the weak-turbulence

where 6v and 6k are resonance-broadening widths
and reflect the level of turbulence present. (In
this Letter we work, for simplicity, in one di-
mension only.) As an illustrative example, the
modified nonlinear-Landau-damping equations
could then be put in the form
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where H is a coupling coefficient. Other weak-turbulence equations are similarly modified—obviously,
in all cases the modified equations conserve the same quantities as the unmodified equations such as
energy, momentum, and particles.’

It remains, of course, to calculate the resonance widths for particular interactions. It is expected
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that the broadening occurs when the interaction is especially sensitive to properties of the interacting
modes (e.g., particle velocity or wave phase or group velocity) which may be altered because of the
turbulence. For example, the quasilinear wave-particle interaction is especially sensitive to the ve-
locity of the resonant particles. Hence, it may be argued that it makes no sense to granulate wave
phase velocity or resonant-particle velocity space finer than

b0 =6(w/k) = |q(167 8,0k /2 /mk| 2, (®)

which is the trapping width of a single wave with amplitude based on the spectral energy density &,
times the width 6k consistent with 6v. In other words, the waves in a width 6k do not get out of phase
with each other in a bounce time 8(w/k)/k in the frame of a resonant particle and hence act as one
wave in scattering the resonant particle over a self-consistent width 6v =6(w/k). Note that 6(w/k)

= |y, —v |6k /E so that (5) may be solved to obtain the well-known result'
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where D" is the quasilinear diffusion coefficient for resonant particles. Note that the resonance width
is proportional to §,}® whereas simple detuning effects are proportional to &, and hence are much
smaller.®

The same considerations apply in finding the resonance widths for the nonlinear-Landau-damping in-
teraction. Here an equation analogous to (5) may be written,

_gf 1= @2 =[ qv /2 1/2:11/2
o0 _5( e k2> ey n 8k, asn B0k ] )

where V is a coupling coefficient” related to H in }

(3) and (4), and 6v is the trapping width of the the particle modes (v, the particle velocity) lead

beat wave based self-consistently on the amount to resonance broadening when the turbulent inter-
of energy in the widths 0k, and 0k, of the driving action is sensitive to these fluctuations, i.e.,
spectra. Note that the resonance widths are re- whenv ~w/k. Ina similar manner, fluctuations
lated to each other by in the wave modes (v, the group velocity) lead to
o —w k. lvn =01 +6F 100n -0 | res'onance-broadening effects in wave-wave inter-
) < kl > 2) =—1 "j % "i £2 , (8) actions when the interaction is sensitive to these
1 T2 172 fluctuations. In general, however, a sufficiently
and since a nonlinearly resonant particle must accurate description of wave-wave interactions
be allowed to see each wave packet of width 6k&; may be based on a granulation of wave coordinate
for the same amount of time, space as fine as detuning effects allow.® The ex-
ception to this rule occurs when waves within the
Ok, / lvgz d =0ksy/ I Ve —V 2 (9) same packet may interact in a manner resulting
From (7)—(9) the resonance widths are obtained, in the cascading of energy within the wave packet.
e.g., For this type of interaction we may assume that

the two high-frequency modes in a three-wave in-

- _ _o| 1z
bv = (161gV /m)[84 84/ (e —v) @, =) 2. (10) teraction belong to the same wave packet and the

Note that for this interaction the resonance diffusion approximation® can be made, i.e., &,
widths are proportional to &, whereas detuning >> Ak, >k, and N,> N,, where N; is wave action
effects are proportional to §,2. Higher-order density and &, and %5 belong to the same wave
wave-particle interactions do not, however, ex- packet subscripted 1. The weak-turbulence equa-
hibit resonance broadening. For example, by tions describing this interaction are analogous to
analogy with (7), for a three-wave-particle in- the quasilinear wave-particle equations, i.e.,
teraction

e] ¢} <]
a_&z_@ﬂl), Ny .,
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—_ 2
From (11), 6v scales as &,° which is of the same v =8nlv] aNl/avﬂl”ﬂ: wy/ky? (12)
order as detuning effects. p STV EN R 100, [0k, 12
For wave-particle interactions, fluctuations in [0y = Ups | Ry = wz/,,gl’
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This analogy extends to the resonance-broadening correction to (12) in v, space which is also~ DY3,
This is because a coherent long-wavelength wave (w,, k,) can“trap” the short-wavelength wave packet
by stimulating decay of high-group-velocity waves to low-group-velocity waves thus decelerating the
packet or vice versa for accelerating the packet. One decay process takes place at one wall of the
trough whereas the opposite decay takes place at the other wall thus trapping the packet. This wave-
wave-packet interaction leads to orbit secularities in v,, space, resulting in a resonance broadening
much in the same way as the analogous wave-particle interaction. A rigorous and detailed description
of this process is given elsewhere.'®'! Here it is sufficient to note that it is possible to obtain a con-
tinuity equation for the action density,

9 9 ov,, 0
Re<5i+vﬂ——+2—“—

. .
ox " "ok, avﬂkZVAzeXP[’(kéf—wzt)]>lA1| =0, 13)

by averaging the equations for the coherent three- h
wave interaction over the fast variations of wave are violated. For example, in the case of non-

packet 1 while retaining the phase information linear Landau damping suppose that the group
associated with the long~wavelength wave packet velocity of wave 2 is equal to the resonant-parti-
2. In obtaining (13) use is also made of the ex- cle velocity. Then from (9) it follows that 6%, is
pansion 1A, (k) 12=14,(k,) ? +k,(80,, /0k,)0 |A, B/ infinite, so that in (7), the quantity &,,6%, includes
8y,,. It may now be recognized that (13) is a all the energy in wave packet 2. Thus, (7) may
“Vlasov” equation for 14, ? in (x,v,,,t) space and - be written as v ~E,'/3(8,, 0k, /* which implies
enjoys the same mathematical properties as the ov ~E,2/38,,1* where E, is now the rms amplitude
usual Vlasov equation and an analogous physical associated with spectrum 2. This physically cor-
interpretation. In particular, for constant 4,, responds to the particle being “quasilinearly
(13) must describe wave-packet trapping analo- resonant” with wave packet 1 in a time-varying
gous to particle trapping with a trapping width plasma due to wave 2. It may be observed that
81, = (VA, ngl/ 9k,)"/? which for a wide spectrum 2 the multiple equality of group velocities in wave
may be cast into the form of (5) from which interactions reduces the order of the resonance
= 1/3 width whereas the number of equalities does not.
ovp, =D /| (14) For example, in the nonlinear-Landau-damping
is obtained. The resonance width 0k, is related interaction, v,, =v,, does not affect the order of
to 6u,, by 0k, =k,00, /v,y —w,/k, ] . the resonance width. In any case, it is clear
For four-wave interactions, it is expected that from the preceding that in all cases considered
resonance broadening does not occur unless two here, there are only two types of resonance-
waves (say 1 and 3) belong to the same spectrum broadening widths, those proportional to 8,}/* and
in such a way that the diffusion approximation those proportional to 8,, and resonance widths in
can be made. It then follows that the interaction, interactions exhibiting singularities reduce to one
which involves the cascading of energy in wave of these types.
packet 1, becomes analogous to nonlinear Landau In conclusion, it should be emphasized that the
damping. It can then be argued that results presented here lead only to the identifica-
2 tion of modes that must be allowed to interact
Oy ~ [N2N4/ {(vgz —vgl)(vg4~vg1)|}1’ : (15) with each other because of the finite level of tur-
It may also be argued by analogy to the wave- bulence—the exact details of this interaction re-
particle interaction that resonance broadening main uncalculated. The philosophy adopted here
does not occur in wave interactions with five or involves recognizing that in the limit of zero tur-
more waves even if two waves belong to the same bulence the details of this interaction are known
wave packet. The exception to this rule occurs and given by the weak-turbulence equations.
when wave-wave interactions exhibit a singularity Thus, a reasonable correction is to “expand”
in the resonance widths analogous to that for about this limit, allowing modes close to exact
wave-particle interactions when the resonant- resonance to interact in much the same way. Be-
particle velocity is equal to the group velocity of cause of the simplified form obtained, a direct
one of the wave packets. When these singulari- comparison with other attempts®™ in the field is,
ties are present, assumptions in the derivation in general, difficult. For the special case of
of the resonance widths (i.e., that they be small) wave-particle resonance broadening, however,
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Dupree! obtained a simple expression for the res-
onance width which is in agreement with the re-
sult here.'?
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We report calculations which suggest that there is a physically important four-atom ex-
change process in bee *He and thus an important four-spin term in the exchange Hamil-
tonian. A simple, mean-field analysis of this Hamiltonian appears to account for a num-
ber of the perplexing properties of bee *He. An understanding of other properties may
require treatment of the exact four-spin term. It is our hope to stimulate such effort by

this Letter.

We report the results of calculations which suggest there is a physically important four-atom ex-
change process in bece solid *He. The process gives rise to a four-spin term in the effective spin or
exchange Hamiltonian with an exchange energy comparable to the nearest-neighbor two-spin term. A
simple-minded mean-field treatment suggests that this four-spin term could lead to a temperature-de-
pendent exchange frequency which offers partial insight to the several perplexing properties of bce

solid *He.!

To facilitate discussion we define the exchange Hamiltonian including pair, triple, and the important

cyclic quadruple exchange?:
1)

()

He=- 2[J1 = 6Jy+ 3J1111,23] Z;_fz 'Tj - Z[Jz -4y, +J1111.23] 27 _fi'_fj
i<j 1<j

_4J1111.23' Z‘I [( T,"Tj)(fk'—fl)"'(_fj'_fk)( f;'fi) - (T, '—I’k)(fj‘_fﬂ]. (1)

i<j<er<i

The first two-spin term involves nearest-neigh-
bor spins [the (1) over the sum], while the sec-
ond involves next-nearest-neighbor spins [the
(2)]. Finally the one four-spin term involves four
atoms located at the corners of the rhombus, ly-
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ing in the (110) plane, whose sides 7, jk, kI, and
Ii are first-neighbor distances (the subscript
1111 in J;y,, ,,) and whose diagonals # and jl are
second- and third-nearest neighbors (the 23).



